top of page

Search Results

46 items found for ""

  • 3D Printed Orthotic Manufacturing: Top Digital Scanner and Software Picks

    Orthotics manufacturers are increasingly embracing industrial 3D printing to build custom orthotics for their customers. Creating custom orthotic insoles using 3D printing technology involves a combination of digital foot scanning, design software, and 3D printing hardware. Compared to traditional methods of manufacturing orthotics, digital manufacturing of orthotics results in higher accuracy, quicker manufacturing times, and reduced labor. Here's a guide to software providers and digital scanner manufacturers that are commonly used in the industry. Steps to Create Custom Orthotic Insoles Foot Scanning Othorics manufacturers use a digital scanner to capture a detailed 3D image of the patient's foot. This image will serve as the basis for the custom insole design. Modeling and Design Once you have a scanned image of the patient's foot, import the scanned data into orthotics design software. Use the software to create a custom orthotic design that meets the patient's specific needs, including arch support, cushioning, and corrective features. 3D Printing Once the design is finalized, send the model to a 3D printer. Choose the appropriate material for the insole, such as flexible polymers for comfort and support. Common materials include Nylon 12 and Nylon 11 for stiffer orthotics, and TPU (Thermoplastic polyurethane) for greater rebound and flexibility. Post-Processing After printing, some insoles may require post-processing, such as vapor smoothing to enhance material properties or adding top covers for additional comfort. Fitting and Adjustment Fit the 3D printed insoles to the patient and make any necessary adjustments for optimal comfort and functionality. By combining accurate scanning technology with advanced design software, the creation of custom orthotic insoles becomes a precise and personalized process, with a quicker turnaround time and a more precise fit for the patient. Digital Scanners for 3D Printed Orthotic Manufacturing There are a variety of companies that specialize in creating digital scanning technology to produce 3-dimensional images of the foot. These range from small scanners that attach to your mobile device to stand-on scanners capable of diagnosing specific foot conditions. The companies listed below are some of the more popular options on the market, listed in no particular order. Ellinvision Overview : Elinvision specializes in high-precision 3D scanning technologies applicable to healthcare and orthotics. They provide advanced scanning solutions known for their accuracy in capturing detailed anatomical data, essential for designing customized orthotic solutions that meet individual patient needs. Top Products : iQube , iQube S , S3DT Website : Elinvision LutraCAD Overview : LutraCAD scanners are advanced tools designed for capturing precise 3D images of the foot, essential for creating custom orthotic insoles. These scanners provide detailed measurements and accurate contours, ensuring a perfect fit for orthotics. Compatible with LutraCAD software, they streamline the workflow from scanning to design and production. The user-friendly interface and high-resolution scanning capabilities make LutraCAD scanners ideal for professionals seeking efficient and reliable solutions for orthotic manufacturing. Top Products : LX500 Compact , LX800 Plus , LXL1800 Website : LutraCAD pedCAT Overview : The PedCAT 3D scanner, developed by CurveBeam, is a specialized imaging device designed for foot and ankle diagnostics. It uses cone beam computed tomography (CBCT) technology to produce high-resolution, 3D images of the foot, providing detailed views of bone structure and joint alignment. The PedCAT scans the foot while the patient is in a natural standing position, which enhances diagnostic accuracy. Top Product : pedCAT Website : Curvebeam AI Scanpod 3D Overview : Scanpod 3D specializes in developing high-resolution 3D scanning solutions tailored for orthotics and medical applications. The Scanpod 3D Scanner is known for its accuracy in capturing detailed foot anatomy, facilitating the creation of custom-fit orthotic insoles with precise measurements. Some of the scanners also have auto-landmarking, measuring, and diagnostic capabilities. Top Product s: XSOL and XPOD  product lines Website : Scanpod 3D Volumental Overview : Volumental specializes in creating 3D scanning solutions for footwear and orthotics, focusing on enhancing customer fitting experiences. Their 3D Foot Scanner uses computer vision and machine learning to create accurate 3D models of feet, facilitating the design and production of custom orthotic insoles. Top Product : Volumental 3D Foot Scanner , Volumental online mobile foot scanning Website : Volumental Artec 3D Overview : Artec 3D offers high-precision 3D scanning solutions renowned for their accuracy and versatility in capturing detailed foot anatomy. The Artec Eva is a handheld scanner ideal for capturing medium to large objects, while the Artec Space Spider excels in capturing intricate details with high resolution, making them suitable for orthotics design and production. Top Products : Artec Eva , Artec Space Spider Website : Artec 3D Revopoint Overview : Revopoint offers cost-effective and portable 3D scanning solutions suitable for medical applications, including orthotics. The Revopoint POP 3 Plus is designed for ease of use and affordability, making it accessible for professionals seeking accurate 3D scans of foot anatomy for orthotics design and manufacturing. Top Product : POP 3 Plus Website : Revopoint Occipital Structure Sensor Overview: Structure Sensor specializes in producing scanning technology which converts your mobile device to a 3D scanner.   These scanners offer a cost-effe ctive solution for capturing precise foot data, facilitating the creation of custom 3D-printed insoles. The Structure Sensor is widely adopted in the orthotics and prosthetics field. Top Products:   Structure Sensor 3 , Structure SDK 3.0 Website : Structure.io Apple iPhones and Orthotics Apps Overview: The LIDAR cameras in newer iPhones and iPads create precise 3D scans of objects, including feet. For orthotics manufacturing, the LIDAR sensor emits light pulses that bounce off the foot, capturing detailed measurements and contours. This data is processed by specialized apps, transforming it into an accurate 3D model. One example is the Comb app, which converts the scans into orthotics models. Comb also provides a scanning fixture which helps create accurate 3D scans of the foot. Website: Combscan Design Software for 3D Printed Orthotic Manufacturing There are various software options available that convert digital scans into designs for orthotic footwear suitable for 3D printing. Here are just a few of the many choices. Fit360 Overview: Fit360 is a cutting-edge 3D scanning solution designed for creating custom orthotic insoles. Using advanced scanning technology, it captures precise foot measurements and contours, ensuring a perfect fit. Fit360's portable and user-friendly device quickly generates detailed 3D models of the foot, which are then used to design and manufacture personalized orthotic insoles with 3D printing technology. This technology enhances the comfort and effectiveness of orthotics by providing accurate data on foot structure and pressure distribution, leading to better support and alignment for users. Website:   https://fit360ltd.com/ Gespodo Overview: Gespodo is a leading provider of 3D scanning and printing solutions for custom orthotic insoles. Utilizing advanced scanning technology, Gespodo captures accurate and detailed foot measurements, which are essential for designing tailored orthotics. Their system ensures a precise fit by analyzing foot structure and pressure points, resulting in insoles that offer superior support and comfort. Gespodo offers the Footscan 3D mobile scanning app with the FootCAD3D design software that designs custom footbeds based on teh scan. Website: https://podo.gespodo.com/en/ Leopoly Overview: Leopoly's LeoShape is a versatile 3D modeling and design software tailored for creating custom products, including orthotic insoles. It offers an intuitive interface that simplifies the process of designing personalized 3D models, making it accessible for users with varying levels of expertise. LeoShape's powerful customization tools allow for precise adjustments based on detailed foot scans, ensuring a perfect fit and enhanced comfort for orthotic insoles. The software supports integration with various 3D scanners and printers, streamlining the workflow from design to production. Website: https://leopoly.com/leoshape/ LutraCAD Overview: LutraCAD software is designed for creating custom orthotic insoles with precision and efficiency. It features advanced modeling tools that allow for detailed customization based on individual foot scans, ensuring a perfect fit. The software integrates seamlessly with various 3D scanners and printers, including their own line of scanners. LutraCAD's intuitive interface makes it accessible to both professionals and newcomers in the orthotics field. Service Providers for 3D Printed Orthotic Manufacturing Most orthotics companies outsource the manufacturing of their 3D-printed insoles to guarantee precision and the use of top-quality materials. By partnering with 3D printing service providers, these companies can access a broad selection of industrial-grade materials with superior material properties, without needing to invest in their own 3D printers. Additionally, 3D printing service providers are capable of mass production, delivering dozens or even hundreds of orthotics within days of ordering. This collaborative approach not only enhances the quality of orthotic solutions but also accelerates the delivery of customized products to patients, ultimately improving their comfort and mobility. 3D Print your Orthotics Insoles with Tempus 3D Partner with Tempus 3D for your orthotics digital manufacturing services. Tempus 3D has experience in manufacturing custom orthotics for the Canadian market, using industry-leading HP Multi Jet Fusion 3D printing technology. Offering experience, precision, and guaranteed quality, Tempus ensures your orthotics are manufactured on-time and on-spec.

  • Revolutionizing Comfort and Mobility: Advancing Orthotics and Prosthetics with 3D Printing

    Introduction The field of orthotics and prosthetics has undergone a remarkable transformation in recent years, thanks to the rapid advancement of 3D printing technology. Traditional methods of creating orthotic and prosthetic devices often involved laborious and time-consuming processes, resulting in products that were less customized and often uncomfortable for patients. However, the integration of 3D printing has revolutionized these industries, enabling the creation of highly personalized, efficient, and cost-effective solutions that significantly enhance the quality of life for individuals in need of orthotic and prosthetic devices. Personalized Solutions for Enhanced Comfort One of the most significant benefits of 3D printing in orthotics and prosthetics is the ability to create personalized solutions tailored to each individual's unique needs. Traditional manufacturing methods often relied on manual adjustments and one-size-fits-all designs, which could lead to discomfort and decreased functionality for the patients. With 3D printing, clinicians can now use precise digital scans and models of a patient's body to create customized devices that perfectly fit their anatomy. The use of 3D printing allows for intricate designs that are otherwise challenging or impossible to achieve with traditional methods. Patients can benefit from orthotic insoles, braces, and prosthetic limbs that not only fit snugly but also distribute pressure evenly and provide better support. This level of customization not only enhances comfort but also improves the overall effectiveness of the devices in addressing the patient's specific condition. Faster Prototyping and Production 3D printing has drastically shortened the timeline for prototyping and production of orthotic and prosthetic devices. In the past, creating a new design or making adjustments to an existing one could take weeks or even months. With 3D printing, designers and clinicians can rapidly iterate through various designs and make real-time adjustments based on patient feedback. This iterative process leads to faster development and delivery of devices, allowing patients to receive their orthotics or prosthetics in a more timely manner. Moreover, the digital nature of 3D printing enables easy storage and retrieval of patient-specific designs. This is particularly valuable for patients who may need replacement devices due to wear and tear or changes in their condition. Instead of starting from scratch, clinicians can access the original digital model and make necessary modifications, streamlining the re-fitting process and minimizing disruptions for the patient. Improved Material Selection and Functionality 3D printing has expanded the possibilities for material selection in orthotic and prosthetic devices. Traditional materials, while effective, often limited the design and functionality of these devices. With 3D printing, a wide range of materials can be used, including lightweight yet durable plastics, flexible elastomers, and even biocompatible materials suitable for direct contact with the skin. This versatility in material selection allows for the creation of more functional and aesthetically pleasing devices. For example, 3D-printed prosthetic limbs can incorporate intricate joint mechanisms and advanced articulation, closely mimicking natural movement. Additionally, the lightweight nature of 3D-printed materials reduces the strain on the wearer and contributes to a more comfortable experience. Cost-Effectiveness and Accessibility Traditionally, the process of designing, manufacturing, and fitting orthotic and prosthetic devices could be costly, making them inaccessible to many individuals in need. 3D printing has the potential to significantly reduce costs associated with production, as it eliminates many labor-intensive steps and reduces material waste. This cost-effectiveness not only benefits patients directly but also contributes to greater accessibility and affordability of these vital devices. Furthermore, the global reach of 3D printing technology means that even underserved communities can benefit from orthotic and prosthetic solutions. Remote or economically disadvantaged areas can now have access to these devices without the need for extensive infrastructure or transportation. Conclusion The integration of 3D printing technology into the orthotics and prosthetics industries has ushered in a new era of innovation, customization, and accessibility. Patients now have the opportunity to receive devices that are not only tailored to their individual needs but also more functional, comfortable, and aesthetically pleasing. As 3D printing continues to advance, we can expect even more groundbreaking developments that will further enhance the quality of life for individuals in need of orthotic and prosthetic solutions. The future holds the promise of greater accessibility, improved functionality, and an overall higher standard of care for those who rely on these transformative technologies.

  • Revolutionizing Custom Orthotics Production with Industrial 3D Printing

    Custom orthotics have been around for thousands of years and have been used to treat different ailments such as bone, joint, and muscle impediments since the Iron Age. These early devices were created by artisans and trades people such as blacksmiths and were not the sleek minimalist design of today’s products. The latest revolution in custom orthotics has been the use of 3D printing. The evolution of production-scale 3D printing has made custom devices available to the masses. What used to take measurements and custom molding along with weeks, if not months, and thousands of dollars can now be done in days with simple scans. Modern 3D printing allows for dozens if not hundreds of these devices to be printed at the same time, driving down the costs and improving accessibility. These aren’t your run-of-the-mill desktop 3D printers though. When you need the accuracy and repeatability required for custom orthotics you need printing technology that can match it. The industry leader in this technology right now is the HP MJF 5200 . With it’s large volume capacity and built for production set-up, there isn’t a technology better matched to the production needs of the custom orthotics industry. Check out this case study from our friends at Hawkridge Systems to see how their customer has harnessed the power of 3D printing to deliver custom orthotics and footwear to their customers. Tempus 3D is an Additive Manufacturing Service Bureau located in Trail, BC serving all of Western Canada including Vancouver, Kelowna, Calgary, and Edmonton with quick overnight delivery and competitive pricing. We use state-of-the-art HP MJF 5200 technology that allows for mass customization and production scale 3D printing. If you have a project you would like to talk to us about you can reach us at info@tempus3d.com , or give us a call at 250-456-5268. Learn more about industrial 3D printing with Tempus 3D View more case studies and articles Learn about manufacturing with HP Multi Jet Fusion 3D printing technology

  • MJF vs.SLS - Competitive Weathering Study between Nylon PA12 W and SLS Materials

    Introduction The two main 3D printing processes for creating commercial-grade nylon parts are HP Multi Jet Fusion (MJF) and Stereolithography (SLS). Each process produces parts with a high level of detail and structural integrity, but how do they compare? HP completed an experiment to examine the impact of accelerated weathering on HP Nylon PA12 W to two main SLS competitor materials. The experiment tracked changes in colour, mechanical properties, and dimensional properties. This article summarizes the main findings of the study. Test Description For this study, HP simulated long-term weathering conditions on 3D printed parts using a combination of fluorescent UV light, temperature, and condensation. The purpose was to compare Nylon PA 12 W produced with HP Multi Jet Fusion, and two comparable Nylon PA 12 materials produced with SLS 3D printing technology. Results Overall, HP Nylon PA 12 W performed better than the Nylon PA12 materials produced with SLS technology. The HP Nylon PA 12 W retained 80 – 90% of its initial mechanical properties, and it didn't show any visible aesthetic changes after extensive exposure to the test conditions. The results are summarized in the table below. Colour The colour of the HP Nylon PA12 compared to the SLS materials was compared at 200 hours, and again at 1,000 hours. After only 200 hours (approx. 8 days) of accelerated weathering, the SLS materials show a clearly visible colour change compared to the HP Nylon PA 12 W material. After 1,000 hours of accelerated testing (around 41 days), the SLS materials have an ∆Ecmc that’s at least 3 times higher than HP Nylon PA 12 W material. Mechanical Properties The graphs below show how the accelerated weathering testing affected the mechanical properties of HP Nylon PA 12 W and the SLS materials. The testing parameters can be defined as follows: Elongation at break (%) shows ductility and how much the material can stretch before breaking. Young’s modulus (MPa), also known as modulus of elasticity, measures the stiffness of the material. Tensile strength at break (MPa) measures the maximum stress a material can withstand before breaking. Charpy impact strength measures the amount of energy absorbed by a material during fracture. During the testing process, all of the materials exhibited relatively stable stiffness over time. However, the HP material exhibited stable ductility and strength properties over time, while SLS materials showed significant degradation after the testing was complete. Dimensional Changes The dimensional change of each of the materials was measured through the weathering study, using the charpy impact bars as a reference. All materials show very little change in their dimensions over time. The variations ranged mostly between +0.5% and -0.5%. Conclusion The results of the accelerated weathering study showed that the HP Nylon PA12 material showed superior colour retention and ductility when compared to the Nylon PA12 3D printed with SLS technology. The HP Nylon 12 showed great colour stability and retained 80-90% of ductility at the end of the test period. The results of the study combined with customer feedback suggests that HP Nylon PA12 W material will be suitable for applications such as medical devices or cosmetic parts where white colour consistency is important, and also suitable for parts which require an extended use or shelf life. Learn more about HP Nylon PA12 W and HP Multi Jet Fusion 3D printing processes. Click on the link below to read the full accelerated weathering study. Data and images courtesy of HP.

  • 3D Printing in Medicine: Revolutionizing the Medical Sector

    From prosthetic limbs to personalized implants, 3D printing technology is rapidly transforming the medical field. This innovative process offers a unique opportunity to create customized solutions for patients, pushing the boundaries of traditional healthcare practices. The Impact of 3D Printing in Medicine 3D printing allows for the creation of patient-specific models of organs, bones, and other anatomical structures. These models are invaluable for surgeons, enabling them to: Plan complex surgeries with greater precision. By studying a 3D-printed replica of a patient's organ, surgeons can identify potential problems and refine their surgical approach, leading to better outcomes and reduced complications. Practice and rehearse procedures beforehand. Surgeons can use 3D-printed models to practice complex surgeries beforehand, improving their skills and confidence, ultimately leading to shorter surgery times and improved patient experiences. Educate patients and their families. 3D-printed models can be used to show patients and their families what to expect during a surgery, leading to better understanding and informed decisions. Beyond Surgical Planning 3D printing is also being used to create a range of innovative medical devices and implants, including: Prosthetics: 3D-printed prosthetics are now available for patients of all ages, offering a more comfortable and functional solution than traditional prosthetics. Implants: 3D printing allows for the creation of custom-made implants, such as hip and knee replacements, which can be perfectly matched to a patient's individual anatomy. Medical devices: 3D-printed medical devices, such as splints and casts, can be quickly and easily created at the point of care, providing patients with customized solutions without the need for long waiting lists. The Future of 3D Printing in Medicine The potential of 3D printing in medicine is vast. Researchers are currently exploring the use of 3D printing for: Bioprinting organs and tissues for transplantation: This technology could revolutionize organ transplantation, addressing the critical shortage of donor organs. Creating personalized drug delivery systems: 3D-printed drugs could be designed to release medication at specific times and dosages, improving the efficacy of treatment. Developing new medical devices and surgical techniques: 3D printing will continue to drive innovation in the medical field, leading to new and improved ways to diagnose and treat diseases. As 3D printing technology continues to evolve, its impact on the medical sector is sure to become even more profound. This transformative technology has the potential to improve patient outcomes, reduce costs, and ultimately make healthcare more accessible and personalized.

  • Unlocking Innovation: The Advantages of Metal 3D Printing

    Introduction In recent years, the world of manufacturing has witnessed a revolutionary transformation with the advent of metal 3D printing technology. Also known as additive manufacturing, metal 3D printing is a cutting-edge technique that builds three-dimensional objects layer by layer using metal powder. This technology has brought about a paradigm shift in the manufacturing landscape, offering a myriad of advantages that are reshaping industries and fostering innovation. Complex Geometries Made Possible Traditional manufacturing methods often struggle with the production of intricate and complex designs. Metal 3D printing, however, excels in creating components with intricate geometries that were once deemed impossible. This capability enables engineers and designers to push the boundaries of what can be achieved, leading to more efficient and optimized structures in industries such as aerospace, healthcare, and automotive. Material Efficiency and Waste Reduction One of the key advantages of metal 3D printing lies in its ability to utilize materials with high precision, minimizing waste. Traditional subtractive manufacturing methods often result in significant material loss as parts are machined from larger blocks. Metal 3D printing builds objects layer by layer, only using the material required for the final product. This not only reduces material costs but also contributes to a more sustainable and environmentally friendly manufacturing process. Rapid Prototyping and Time-to-Market Acceleration The speed at which metal 3D printing can produce prototypes is a game-changer for product development cycles. Design iterations that would traditionally take weeks or months can now be accomplished in a fraction of the time. This accelerated prototyping process allows companies to bring products to market faster, giving them a competitive edge in today's dynamic business environment. Customization and Personalization Metal 3D printing enables the production of highly customized and personalized components. Whether it's a unique medical implant tailored to an individual's anatomy or specialized aerospace parts, this technology empowers manufacturers to create products that meet specific requirements. The ability to tailor designs on a case-by-case basis opens up new possibilities in fields like healthcare, where patient-specific solutions are increasingly in demand. Weight Reduction and Enhanced Performance In industries where weight is a critical factor, such as aerospace and automotive, metal 3D printing offers a unique advantage. The technology allows for the creation of lightweight structures with optimized geometries, maintaining structural integrity while reducing overall weight. This not only improves fuel efficiency but also enhances the overall performance and durability of the final product. Cost-Effective Low-Volume Production While traditional manufacturing processes may struggle with cost-effectiveness in low-volume production runs, metal 3D printing excels in this area. The flexibility of additive manufacturing allows for efficient production of small batches without the need for expensive tooling and molds. This is particularly beneficial for niche markets, prototypes, and custom components where economies of scale are not a primary concern. Conclusion Metal 3D printing has emerged as a transformative force in the manufacturing industry, unlocking new possibilities and pushing the boundaries of what can be achieved. From complex geometries to sustainable practices, the advantages of metal 3D printing are reshaping the way products are designed, prototyped, and manufactured. As the technology continues to evolve, it holds the promise of further innovations, propelling industries into a future defined by efficiency, customization, and unparalleled design freedom. Explore the Posssibilities of Metal 3D Printing with Tempus 3D Additive Manufacturing If you are interested in trying industrial 3D printing for prototyping or production of end-use products, Tempus 3D offers cost-effective industrial 3D printing solutions for the Canadian market. Tempus clients are able to establish a direct-to-manufacturer link, allowing personalized service and the opportunity to create custom contracts suited to your manufacturing needs. Learn more about Tempus 3D at www.tempus3d.com, or contact us to discuss how we can help you meet your production goals.

  • How HP 3D Printing Technology Helped Biotec Make Products Better, Faster, and More Affordably

    Biotec is an Italian company that develops and manufactures equipment for the medical and aesthetics industries. Biotec was looking for way to improve the quality of manufactured parts while reducing the time of production and overall cost. Traditionally, Biotech used injection molding, but they started investigating alternative production options including 3D printing with HP Multi Jet Fusion technology. Biotec completed a head-to-head comparison of HP Multi Jet Fusion 3D printing with injection molding and measured the results. The part they tested was the handpiece shell of a Biotec product called Lipo-Ice. The results of the test were impressive: the surface and material quality of the end part were nearly identical the cost of production was reduced by 50+% the overall productivity in the part manufacturing process was improved. As a result of the study, Biotec invested in HP Multi Jet Fusion 3D printing technology, and now use it for prototyping and manufacturing for many of their devices. “Our HP Jet Fusion 3D 4200 Printing Solution has allowed us to significantly reduce the production time of our parts ... We can now make them in 24 to 48 hours, instead of taking an entire week. The cost has also been reduced by about 66%, without any compromise in quality. 3D printing is now fully integrated into our production cycle.” (Matteo Pretto, Biotec) The HP Multi Jet Fusion 3D printing technology provides a competitive advantage for Biotec, allowing them to produce higher quality parts more quickly and affordably than with their previous manufacturing processes. Learn more about prototyping and manufacturing end-use parts with an HP-Certified Manufacturing partner at https://www.tempus3d.com/hp-multi-jet-fusion The information and images provided in this article are courtesy of HP. A link to the full article is provided below.

  • How Industrial 3D Printing Helps Manufacturers like Campbella Robotics Reduce Cost and Lead Time

    Industrial 3D printing has been a game-changer for manufacturers around the world, allowing them to save time and money while reducing time-to-market and increasing their ability to innovate. In this video you will learn how Campetella Robotic Center, an Italian manufacturer of industrial robots and injection molding systems, uses HP Multi Jet Fusion 3D printing technology to reduce time-to-market for their products while improving product design and improving energy efficiency. Camptella Robotic Center is a multi-national company, but small-to-medium manufacturers can also leverage the competitive pricing, short lead time and design freedom available of 3D printing by using local 3D printing service bureaus. Service bureaus allow you to research materials, compare prices and have an end product in their hands within days, and avoid the cost and labor involved in owning their own equipment. If you are interested in trying industrial 3D printing for prototyping or production of end-use products, Tempus 3D offers cost-effective industrial 3D printing solutions for the Canadian and US market. Tempus clients are able to establish a direct-to-manufacturer link, allowing personalized service and the opportunity to create custom contracts suited to your manufacturing needs. Learn more about Tempus 3D at www.tempus3d.com, or contact us to discuss how we can help you meet your production goals.

  • The Haf-Clip gets their product to market in record time with a Canadian 3D printing company

    The Haf-Clip is a business based in Vancouver, BC which creates products for the recreational sports industry, specifically mountain biking. The founder of the company designed a system for riders to carry helmets and other gear on their bicycle handlebars, and needed a manufacturer to produce final prototypes for real-world testing and produce low-to-medium volume production runs once the design was finalized. The Haf-Clip wanted to work with a local manufacturer that could quickly produce affordable, functional prototypes to test their design and provide on-demand manufacturing of their end-product. An associate recommended Tempus 3D, because of it’s expertise in industrial 3D printing and ability to access a variety of materials and manufacturing technologies with low-up-front cost and quick turnaround. After an initial consultation to determine the company’s manufacturing requirements, the experts at Tempus were able to recommend a variety of materials to test, including Nylon PA12, TPU flexible polymer, and machined aluminum. The first functional prototypes were produced with their in-house HP Multi Jet Fusion 5200 3D printer, which is capable of rapidly producing affordable industrial-strength plastics at a low cost per part. This allowed the Haf-clip to quickly test their product in real-world environments, and once the proof-of-concept was validated they were able to use the same technology to manufacture their initial production run of 250 nylon parts within weeks of the first prototype being built. As The Haf Clip continues to see increasing demand for their products Tempus 3D is there to help them scale and meet their needs. With the ability to produce from 1-1000+ parts within days of ordering, Tempus can ensure that The Haf-Clip can easily fulfill any customer order on an as-needed basis with a consistently low cost per part, eliminating the need to pre-order or maintain an inventory of parts. To learn more about how Tempus 3D supports designers and manufacturers to bring their products into reality, visit www.tempus3d.com. Read the full case study here . Visit The Haf-Clip to learn more about their product. Learn more about Multi Jet Fusion 3D printing technology . Explore industrial-grade 3D printing materials provided by Tempus 3D.

  • Nylon PA-12 vs. Polypropylene: A Comparative Analysis for 3D Printing Applications

    Introduction The rapid evolution of 3D printing technology has ushered in a new era of manufacturing possibilities, enabling the creation of complex and customized objects with unprecedented ease. As this technology continues to advance, the selection of suitable materials becomes crucial in determining the success of 3D printing applications. Two popular contenders in the realm of 3D printing materials are Nylon PA-12 and Polypropylene. In this blog post, we will delve into a comprehensive comparison of these two materials, exploring their characteristics, advantages, limitations, and real-world applications to help you make informed decisions when choosing the right material for your 3D printing projects. Nylon PA-12: Properties and Applications Nylon PA-12, also known as polyamide 12, is a versatile and widely used material in 3D printing. It belongs to the nylon family of polymers, known for their excellent mechanical properties, chemical resistance, and thermal stability. Nylon PA-12 exhibits the following key properties: Strength and Durability Nylon PA-12 is renowned for its exceptional tensile strength and impact resistance. Its high mechanical properties make it suitable for producing functional prototypes, end-use parts, and components subjected to stress or mechanical loads. Flexibility The material's inherent flexibility and elongation at break make it suitable for parts requiring some degree of elasticity. This attribute is particularly advantageous for applications involving snap fits, living hinges, and wear-resistant components. Chemical Resistance Nylon PA-12 exhibits resistance to various chemicals, including oils, greases, and most solvents. This property makes it suitable for applications in industries such as automotive, chemical processing, and oil and gas. Thermal Stability Nylon PA-12 boasts a relatively high glass transition temperature (Tg), which ensures stability at elevated temperatures. This characteristic is beneficial for applications requiring heat resistance, such as under-the-hood automotive parts and industrial equipment. Surface Finish While Nylon PA-12 can produce smooth surfaces, achieving a high-quality finish may require post-processing steps like vapour smoothing or ceramic coating. However, advancements in 3D printing technology and techniques are continually improving surface finish straight out of the printer. Polypropylene: Properties and Applications Polypropylene (PP) is another widely used thermoplastic polymer with a variety of applications in traditional manufacturing. Its unique combination of properties makes it an attractive choice for 3D printing applications. Key properties of polypropylene include: Low Density Polypropylene is a lightweight material with a low density, making it suitable for applications where weight reduction is crucial. This property is particularly advantageous in the aerospace and automotive industries. Chemical Resistance Similar to Nylon PA-12, polypropylene exhibits excellent resistance to chemicals and solvents, making it suitable for applications involving contact with corrosive substances. Fatigue Resistance Polypropylene demonstrates high fatigue resistance, allowing it to withstand repetitive loads and mechanical stresses without undergoing significant degradation. This property is advantageous for parts subjected to cyclic loading, such as hinges and springs. Semi-Flexible to Flexible Polypropylene offers a range of flexibility, from semi-flexible to fully flexible, depending on the specific formulation used. This flexibility makes it suitable for applications requiring living hinges, snap fits, and ergonomic designs. Surface Finish Polypropylene's surface finish is generally smoother compared to some other 3D printing materials, which can reduce the need for extensive post-processing. However, achieving a high-quality surface finish may still require additional steps. Comparing Nylon PA-12 and Polypropylene Mechanical Properties Both Nylon PA-12 and Polypropylene offer excellent mechanical properties, but Nylon PA-12 typically has higher tensile strength and impact resistance. This makes Nylon PA-12 a preferred choice for parts subjected to heavy loads and mechanical stresses. Flexibility Polypropylene has a similar level of flexibility compared to Nylon PA12. Chemical Resistance Both materials exhibit excellent chemical resistance, with slight variations depending on the specific chemicals involved. Engineers and designers should consider the exact chemical exposure the part will face to determine the most suitable material. Thermal Properties Nylon PA-12 generally has a higher glass transition temperature than most formulations of polypropylene, making it more suitable for applications requiring heat resistance. Weight Polypropylene's low density gives it an advantage in weight-sensitive applications, such as those in the aerospace and automotive industries. Post-Processing and Surface Finish Polypropylene often requires less post-processing to achieve a smooth surface finish compared to Nylon PA-12. However, advancements in 3D printing technology and post-processing options are improving the surface finish of both materials. Printability and Compatibility Nylon PA-12 is compatible with a wider range of 3D printers due to its popularity and established use. Polypropylene may require specific printer modifications or formulations to ensure successful prints. Real-World Applications Nylon PA-12 Applications Functional Prototypes: Nylon PA-12's strength and durability make it ideal for creating prototypes that closely resemble the final product in terms of mechanical performance. Automotive Components: Nylon PA-12's chemical resistance and thermal stability make it suitable for manufacturing under-the-hood components, brackets, and connectors. Industrial Machinery: The material's toughness and resistance to wear and tear are advantageous for producing components used in heavy machinery and industrial equipment. Polypropylene Applications: Lightweight Parts: Polypropylene's low density makes it an excellent choice for manufacturing lightweight components in industries such as aerospace and automotive. Living Hinges: Polypropylene's fatigue resistance and flexibility make it well-suited for producing living hinges in products like packaging, containers, and enclosures. Medical Devices: Polypropylene's biocompatibility and chemical resistance render it suitable for producing certain medical devices and equipment. Conclusion When it comes to 3D printing applications, choosing the right material is essential for achieving desired mechanical, chemical, and thermal properties. Nylon PA-12 and Polypropylene both offer unique advantages and are suitable for a variety of applications. Nylon PA-12 excels in its mechanical strength and durability, while Polypropylene stands out for its lightweight nature and flexibility. The choice between these materials depends on the specific requirements of your project, including load-bearing capacity, chemical exposure, flexibility, and surface finish. As technology advances, both materials will likely continue to improve, providing even more options for successful 3D printing applications. As you embark on your 3D printing journey, carefully consider the attributes of Nylon PA-12 and Polypropylene to select the material that best aligns with your project's objectives and specifications.

  • Comparing TPU BASF 95A and TPU Lubrizol 88A: Unveiling the Versatility of Flexible Polyurethanes

    Introduction In the realm of thermoplastic elastomers, two prominent contenders have emerged as leading options for various industrial applications: TPU BASF 95A and TPU Lubrizol 88A. These materials belong to the thermoplastic polyurethane (TPU) family, which is highly regarded for its exceptional combination of flexibility, durability, and processing ease. In this comprehensive comparison, we will delve into the key characteristics, performance attributes, and application areas of TPU BASF 95A and TPU Lubrizol 88A. By the end of this analysis, you will have a clear understanding of how these materials stack up against each other and which one might be better suited for your specific project. TPU BASF 95A: Unraveling the Versatility TPU BASF 95A, manufactured by BASF Corporation, is a popular member of the thermoplastic polyurethane family. Its '95A' designation signifies its hardness on the Shore A scale, indicating a material that is moderately soft yet exhibits sufficient rigidity for many applications. This material is celebrated for its exceptional mechanical properties, offering an appealing balance of tensile strength, elongation at break, and abrasion resistance. Strengths of TPU BASF 95A Mechanical Properties TPU BASF 95A boasts impressive mechanical properties, making it suitable for applications requiring both flexibility and strength. Its high tensile strength ensures it can withstand considerable stretching and pulling forces without succumbing to deformation or breakage. Abrasion Resistance The material's remarkable resistance to abrasion makes it ideal for applications that involve constant friction and wear, such as industrial belts, gaskets, and seals. Chemical Compatibility TPU BASF 95A exhibits good chemical resistance, enabling it to withstand exposure to a wide range of chemicals and solvents without undergoing significant degradation. Processing Ease This TPU grade can be easily processed using various conventional thermoplastic processing techniques, including injection molding, extrusion, and multi jet fusion with the HP 5200 line of 3D printers. Versatile Applications TPU BASF 95A finds its use across an array of industries, including automotive, consumer goods, footwear, and industrial manufacturing. Its adaptability to different environments and requirements makes it a versatile choice. TPU Lubrizol 88A: Unleashing Performance TPU Lubrizol 88A, developed by The Lubrizol Corporation, is another formidable player in the TPU landscape. With a Shore A hardness of 88A, this material leans slightly towards the harder end of the TPU spectrum, offering unique advantages in specific applications. Its distinct combination of properties makes it a preferred choice for applications that demand resilience, stability, and processing efficiency. Strengths of TPU Lubrizol 88A Stability and Resilience TPU Lubrizol 88A's hardness lends it greater stability and resilience, making it suitable for applications where dimensional stability and consistent performance over time are critical. Clarity and Aesthetics This TPU grade often exhibits excellent clarity and can be tinted to achieve specific colors. This feature is highly advantageous for applications requiring an appealing visual appearance, such as transparent parts or products with vibrant colors. Improved Heat Resistance TPU Lubrizol 88A tends to have better resistance to elevated temperatures compared to softer TPUs, expanding its usability in applications involving exposure to heat or sunlight. Ease of Processing Similar to TPU BASF 95A, TPU Lubrizol 88A is easily processable using standard thermoplastic processing techniques, including multi jet fusion 3D printing with the HP 5200 line of 3D printers. Specific Applications TPU Lubrizol 88A is often chosen for applications like clear tubing, consumer goods, medical devices, and industrial components that require a balance of mechanical performance and aesthetics. Comparative Analysis: TPU BASF 95A vs. TPU Lubrizol 88A Mechanical Performance TPU BASF 95A offers excellent tensile strength and elongation at break, making it suitable for applications demanding dynamic loads and stretching. TPU Lubrizol 88A, with its hardness and stability, excels in applications requiring resilience and consistent mechanical properties over time. Abrasion Resistance Both TPUs exhibit commendable abrasion resistance, but TPU BASF 95A might have a slight edge due to its slightly softer nature. Chemical Compatibility Both materials display good chemical resistance, making them reliable choices for various industrial environments. Processing Ease TPU BASF 95A and TPU Lubrizol 88A offer similar processing ease, simplifying manufacturing and design processes. Temperature Resistance TPU Lubrizol 88A's enhanced heat resistance makes it a preferred option for applications that involve exposure to elevated temperatures. Applications TPU BASF 95A's versatility makes it suitable for a wide range of applications, from automotive parts to consumer goods. TPU Lubrizol 88A's clarity and aesthetic appeal make it well-suited for transparent components, medical devices, and products where appearance matters. Conclusion In the world of thermoplastic polyurethanes, the choice between TPU BASF 95A and TPU Lubrizol 88A depends on the specific requirements of the application at hand. TPU BASF 95A offers a balanced combination of mechanical properties, abrasion resistance, and versatility, while TPU Lubrizol 88A excels in applications requiring stability, resilience, and aesthetics. Both materials have proven their worth across various industries, contributing to the advancement of manufacturing, design, and innovation. As technology evolves and new challenges arise, these TPUs will likely continue to play a pivotal role in shaping the future of materials engineering. Learn More BASF TPU products: https://www.basf.com/global/en/products/plastics-rubber/thermoplastic-polyurethanes.html Lubrizol TPU products: https://www.lubrizol.com/Engineered-Polymers/Products/TPU Try TPU today Interested in trying TPU flexible polymer? Order BASF TPU 01 through Tempus 3D's free online quote and ordering system, or send a custom request for TPU BASF 95A or TPU Lubrizol 88A through Tempus 3D's Contact page.

  • Cerakote vs. Powder Coating for 3D Printed Plastic Parts

    Manufacturing end-use plastic parts with 3D printing technology is increasingly common as the materials and technologies become more advanced. High-performance coatings such as Cerakote are also becoming increasingly popular to improve the aesthetics and performance of the parts. Although powder coat is not commonly used on plastic, it is a familiar finish that can be an excellent baseline to use as a comparison for those who have not tried Cerakote before. What is Cerakote? Cerakote is a thin-film ceramic coating developed by NIC industries. Originally used on metal for military applications, Cerakote is becoming increasingly popular to improve the looks and performance of 3D printed plastic parts. Cerakote extremely durable and it can increase wear resistance, corrosion resistance, chemical resistance, and hardness of the base material. Cerakote is applied as a paint, then air dried or heat-cured to chemically bond it to the surface of the part. Cerakote is a very thin compared to powder coat, with minimal effect on the dimensions of the coated part. What is Powder Coating? Powder coating is a finishing process in which dry powder material is applied to a surface, then heat-treated to create a hard coating. Powder coating can provide both functional and decorative surface coatings in a range of finishes and textures that are not as achievable by liquid coating methods. Cerakote Advantages and Disadvantages Advantages Very thin, with a thickness of approximately 0.002”. Suitable for applications with a low dimensional tolerance. High abrasion resistance. Stable in UV light. Resistant to chemicals and fluids. High resistance to flaking and peeling. In a Taber abrasion test on Cerakote H-146 Graphite Black, Cerakote lasted nearly twice as long as the nearest competitive finish and 24 times as long as the furthest competitive finish. Disadvantages More expensive than powder coating. Not the best choice if a thick or textured finish is desired. Powder Coating Advantages and Disadvantages Advantages Lower cost than Cerakote. Provides a thicker finish, if this is what is desired. Disadvantages Generally not used for plastics, due to the heat-curing process. Prone to chipping or peeling. Colors can be faded by UV light. Conclusion Overall, Cerakote and Powder coat are both excellent finishes and useful to enhance the performance, durability and looks of your end-use parts. When compared to powder coat, Cerakote is thinner, more resistant to chipping and scratching, and more stable in UV light. Cerakote also has excellent resistance to chemicals and liquids. When choosing a finish for plastic parts Cerakote is generally the finish of choice, as it is specifically formulated for a variety of plastics.

bottom of page